Non-commutative Castelnuovo–Mumford regularity and AS-regular algebras
نویسندگان
چکیده
منابع مشابه
Non-commutative Gröbner Bases for Commutative Algebras
An ideal I in the free associative algebra k〈X1, . . . ,Xn〉 over a field k is shown to have a finite Gröbner basis if the algebra defined by I is commutative; in characteristic 0 and generic coordinates the Gröbner basis may even be constructed by lifting a commutative Gröbner basis and adding commutators.
متن کاملCharacteristic-free bounds for the CastelnuovoMumford regularity
We study bounds for the Castelnuovo–Mumford regularity of homogeneous ideals in a polynomial ring in terms of the number of variables and the degree of the generators. In particular, our aim is to give a positive answer to a question posed by Bayer and Mumford in What can be computed in algebraic geometry? (Computational algebraic geometry and commutative algebra, Symposia Mathematica, vol. XXX...
متن کاملNon-regularity of multiplications for general measure algebras
Let $fM(X)$ be the space of all finite regular Borel measures on $X$. A general measure algebra is a subspace of$fM(X)$,which is an $L$-space and has a multiplication preserving the probability measures. Let $cLsubseteqfM(X)$ be a general measure algebra on a locallycompact space $X$. In this paper, we investigate the relation between Arensregularity of $cL$ and the topology of $X$. We find...
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملNon Commutative Arens Algebras and Their Derivations
Given a von Neumann algebra M with a faithful normal semi-finite trace τ, we consider the non commutative Arens algebra Lω(M, τ) = ⋂ p≥1 Lp(M, τ) and the related algebras L2 (M, τ) = ⋂ p≥2 Lp(M, τ) and M + L2 (M, τ) which are proved to be complete metrizable locally convex *-algebras. The main purpose of the present paper is to prove that any derivation of the algebra M + L2 (M, τ) is inner and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2009
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2009.03.013